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Abstract

EINSTEIN’S EQUATIONS IN VACUUM SPACETIMES WITH TWO SPACELIKE
KILLING VECTORS USING AFFINE PROJECTION TENSOR GEOMETRY

By Miles Daniel Lawrence

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 1994
Major Director:  Dr. Robert H. Gowdy

Associate Professor, Department of Physics
Einstein’s equations in vacuum spacetimes with two spacelike killing vectors are explored
using affine projection tensor geometry. By doing a semi-conformal transformation on the
metric, a new “fiducial” geometry is constructed using a projection tensor field. This
fiducial geometry provides coordinate independent information about the underlying

structure of the spacetime without the use of an explicit form of the metric tensor.



The Background
Introduction

When doing general relativity, one of the hardest tasks is determining exact
solutions to Einstein’s equations and, once they are found, determining the properties of
the spacetimes they describe. This is a difficult task because of the complexity of
Einstein’s equations, and therefore finding a new solution is uncommon. A typical method
used to simplify the problem is to find solutions that exhibit one or more symmetries. In
addition, one may try to find solutions representing "empty" universes or “dust filled”
universes with very simple matter. Many solutions of these types have been discovered
and the process of determining the properties of the underlying spacetimes is the difficult
task ahead.

One method is to use projection tensor fields to decompose the Riemann curvature
tensor. A projection tensor projects a higher dimensional object onto a lower dimensional
one. For example, a 4-vector can be projected into 3-dimensions to get the space
component or into 1 dimension to get its time component. This is an excellent method for
looking at the hypersurfaces of spacetimes that have symmetries. The problem in the past
has been that the projection tensor fields used have assumed a normal projection, with co-
dimension one. This produces problems when one tries to project on two-surfaces or
lightlike surfaces and other situations where the metric is degenerate.

In 1974, Robert Gowdy wrote the paper entitled Vacuum Spacetimes with Two-
Parameter Spacelike Isometry Groups and Compact Invariant Hypersurfaces:
Topologies and Boundary Conditions [4]. This paper works out a set of exact solutions
to Einstein’s equations in an empty universe with cylindrical symmetries.

Earlier this year, Gowdy completed a paper on using affine projection tensor

geometry to decompose the curvature tensor in Einstein's equations [1]. In his method, the



projection can be tilted and the connection, as well as the co-dimension, can be arbitrary.
This does away with the problems mentioned before in normal projection tensor
techniques. Using this one can decompose the different hypersurfaces of the spacetime and
look at them separately.

This thesis will tackle the empty universe with cylindrical symmetries problem
using Gowdy's affine projection tensor techniques. It will begin with a brief overview of
differential geometry and the geometric objects that will be used in it. A review of the
projection tensor techniques and the new geometric objects it produces is then discussed.
Assembly notation, another of Gowdy's recent techniques, will be discussed to simplify
the number of equations the affine projection tensor techniques produce. The remainder of
the thesis will be devoted to the decomposition of the curvature tensor in the proposed

spacetime, and then a brief conclusion of the work.



Justification for the Thesis

There are several reasons for wanting to complete this work. First, we will get a
better understanding of Gowdy universes. Today, there is still much work being done in
Gowdy universes [18,19,20 ]. The reason for this is that they represent inhomogeneous
cosmologies. Our present universe is inhomogeneous. This is pretty obvious; all one has
to do is look up in the night sky and see stars and voids. When astronomers study large
structures, there seems to be no "largest" object. Stars are in galaxies, galaxies are in
galactic clusters, and more recently a "Great Wall" of galactic clusters has been observed.
To explain why we have these, the early universe must have contained density fluctuations
from which these structures formed. Resent experiments have shown that this is true. The
Cosmic Background Explorer (COBE) has shown that the microwave background radiation
is anisotropic. It has measured a temperature variation AT/T of 6 x 106 in the
background[16]. This implies that at the time the radiation dominated universe gave way to
the matter dominated universe, it had to be inhomogeneous.

Another benefit from this research is that it provides a tool for doing stellar
dynamics. In rotating systems, such as a rotating star, there is no longer a spherical
symmetry. These systems then have only two symmetries, or two Killing vector fields, a
timelike one and a spacelike. The problem is then of the same type as in this thesis, since
the projection is arbitrary and can include either space or time components.

In the real universe, the solutions of Einstein's equations are very complex. By
finding solutions of easy systems by making simplifications in spacetimes, we can gain an
insight into the machinery of general relativity. These simple and exact solutions also
provide a testing ground for computer codes. Complex programs that model the universe
need to be tested againts known solutions so that their results in modeling real spacetimes

may be correct.



Differential Geometry

In order to understand the methods and equations contained is this thesis, some
basic notations for our geometric objects must first be defined. We will start with a world
line. A world line is a curve that a particle follows in four dimensional spacetime. It is just

the history of a particle, giving the positions of the particle at various times. We will

often talk about the tangent vector to the

uy /<4 Geodesic world line, or the 4-velocity vector u (See

u _sp Figure 1). If we divide the world line up
is tangent to
the world line by a parameter A, then u is the derivative
< Worldline along the world line with respect to A, or
d
u=——n=4d, =u’e_, 1
ar M

where the last notation uses the Einstein

summation convention for repeated indices.

Figure 1. A world line.

u® is the vector component and e, is a basis vector. If we let A be the "ticks" of a clock

moving along the curve, it is an affine parameter. That is the type used in this thesis.

Vectors live in the tangent space of the

world line, Tp .

A one-form, ¢, is the dual to the

tangent vectors (See Figure 2). It describes

<= Worldlines what is happening between adjacent world

lines. ¢ can be written as
¢=0,0°% )

where @ is the basis one-form such that

Figure 2. The one-form, ¢, dual to the
tangent space of the world
lines.

o _ Qo
0] eﬁ—5ﬁ.




One-forms live in the cotangent space to the world line, f"p.

There is also a need to determine distances in spacetime. For this a metric is
needed. The metric, g, is a "machine" that "eats" vectors. By putting in two vectors u
and v, it gives the inner or dot product of the two vectors.

u-v=guv)
One can see here that g is a tensor. By using the fact that it is linear and the component

form of the vectors, we get the more familiar notation,

glu,v)= g(u“ e, VP eﬁ) = u“vﬁg( ea,eﬁ) = u“vﬁgaﬂ. €))

The metric is what we use to find distances since it describes the geometry of the
spacetime. It is a map from the tangent space, T, to the real numbers.
g:T,xT, >R

The inner product of the one-forms is given by the inverse metric, g~', where

- é = g_l(q)’é)-
Using the linearity of the tensor, we get
§7(9.6)=87(0.080") =9, £87 (0" 0") = 9.5 8. @

~

The inverse metric maps from the cotangent space, T, to the real numbers, i.e.,

g T, xT >R
I must now discuss how to take a derivative. The directional derivative of the

vector v in the direction of u in spacetime is given by

— — [24
Vy=Ve v=u"V, v.

Notice that the derivative is linear in the direction that it is taken. Using the chain rule, we

get the following



u*vV, v=u" (Veavﬁ)eﬂ +u®vP Veae,,,

€a

or, using the usual notation,
u*Vv,v=u" (Vavﬁ)eﬂ +uvP \e

For the second term, we need the connection. The connection tells us how to take a

derivative in the spacetime:

u V'V, eg =u’v’ | R eg

where I is the connection coefficient. This yields
u*vV, v=u" (Vavﬁ)eﬁ +u V' TP, eg (5)
Similarly, the covariant derivative of a one-form is given by
V,0=V,(8,0")=(V,8; 0" - ¢, T"sa00". (6)
Notice that the all that is different is the sign of the connection coefficient and we contract
with the other index. The last index always refers to the differentiating index.

The metricity, Q, is the covariant derivative of the metric tensor and describes the

relationship between the metric and the connection.
Qaﬂy zvy 8ap =€y gaﬂ_gaara By~ goﬁra ay (7N
or

QaﬁY =_Vy gaﬂ =_ey gaﬁ_glw rﬁ ay_gaﬁ re oy’ (8)
If the connection is metric compatible, then we say that

0,5, =0. )

The commutation coefficients, c’ s> are defined by

N
[ea,eﬂ] =C aﬁey.



If we now take the commutation between two covariant derivative operators acting on a

function f, we get

VooVl f =(c" ape, =217 (ope, ) F =" ape,f =57 o5V, f (10)
where S, 5 is the torsion of the spacetime. This is just taking the derivative of a function
at a point in one direction and then another, and then subtracting off the derivatives taken in
reverse order. In general the torsion is set to zero in general relativity to simplify Einstein's
equations.

Using these, it can be shown that the connection coefficients can be written as

1
B _ Bo p p p
I Yo Eg (eagay + €800 " €:8ya " 8ypC ca 85pC ay+ 8ap € 70'+ Syaa + Saay - Saya)

(11)
where the c's are the commutation coefficients of the basis and the S's are torsion. In most

cases, ¢’ is zero. From this we can see that the connection depends greatly on the
metric being used.
The Riemann curvature tensor, R , ? B> is defined as
p o _ Y o
R, (= [V Ve]- 5" 0p V, Ju’ (12)
Physically, curvature tells us what happens when a vector is parallel transported around a

closed loop on the manifold. If we contract the first two indicies, we get the Ricci

curvature tensor.

R,° op=Rop (13)

These are the basic geometric objects that will be used in this thesis.



Lie Derivatives

The Lie derivative tells what happens when we drag one vector field along another.

The Lie derivative of a vector field u with respect to a vector field N, is obtained from

(£vue) f =[N, ulf (14)
for any function f. We will need to relate the Lie derivative to the covariant derivative, so

we write the commutator as
(£ve) Vo f =[NPV, )V, )= (' 7, ) (NP V,)| £
From Eq. (10), the definition of the torsion tensor, we can define the following quantity
V., N/ =V NP -5P N
then the Lie derivative is given by
(£yu)"=N? Vyu® - u? Vi N®.
The Lie derivative of an arbitrary rank tensor 7 is then related to the covariant derivatives of

the tensor by

AR R — A7Y oty Oty -0, _prapo, AN
(£NT) ﬁlﬁZ"'ﬁm_N VYT : BiByBn " BiBy-B V}’N

m

oy Y, N 7 o 7R 4 r ATO,

™ BiBy B VV N ™= BBy B V?’ N (15)
+TH YByB Vzin N7 +T% %% Biy-B V;iz N7
e TH0T Vi N7,

BiByy " B



Affine Projection Tensors

Using the methods in Gowdy's new projection tensor techniques [1], certain
geometric objects can be formed that exist without ever defining what the metric of the
spacetime is. A brief overview follows.

I will start with defining the projection tensors. H* ; is a projection tensor field

that assigns each point P of the spacetime manifold a linear map into the tangent space
H(P):T, — T, such that
H>=H. (16)

What this means is that H takes things that live in the four-dimensional spacetime

manifold and projects them into the subspace HT,. H also act as the identity operator on
HT,. The complementary projection tensor, % pgristo H * s such that

H+V=I, (17)
where I is the identity map. Also note that

HV =0. (18)
Take for example a tensor T, sy~ We can project each of its indices into either HT,,,
H*fp, VT, or V*f"p.
T[HVHH:IaBS}':HuaVBvHaﬁprTuvUp‘

This is called a projected tensor. The notation in the brackets tells what projection tensor

is used to project the corresponding index. The projected metric tensors are

8unap =H" o H® 8o (19)
gVVa[i = Vp o Va ngc

and the cross projected metric tensors are

gHVaﬂ =Hpavaﬂgpa
gVHa[i = VpaHG nga‘
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The full metric in terms of these restricted or projected metrics is

gaﬂ = gHHa,B +gVVa[i +gHVa[i +gVHa,B‘ (20)

Similarly, we have the restricted inverse or form-metrics

Letting X, Y and Z represent either H or V, the general form of the form-metrics becomes
D G G 1)
There will also be times when we need to know the derivative of the projection

tensor. In order to do this, we will use a set of objects called the projection curvature

tensors.

hHaM:HpﬁHGVVGHaP
T o __ o

hHB }’—H pHayvaHpﬂ
hVaﬁr=VpﬂV67V6Vap

T a _ yo o
hy g, =VE VO V VP,

(22)

The projection curvatures obey the following projection identities:

0 Vo o 19 =

H op H By
il n" w)s® = H GV shy o JH? = by,
hV[HVV]aﬂ}':Haﬁthdpvdﬂprthaﬂr
hxt[vHv]ﬁayzvaﬁHaahT s pr=hr a

Vo p VB v

Using these, it can be shown that the derivative of the projection tensor is given by

VVHaﬁzhﬂaﬁr_hvaﬂr"'h;ﬁay_h‘tﬁar (23)

and
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VVVaﬁzhvaﬂy_hﬂaﬁy+h$ﬁa7—h£ﬁay' 24)
Notice that the derivative of the projection tensors are similar, the H and V are just
interchanged.
Since the projection curvature tensors each have two indices that project into the
same subspace, we can contract on those and define the divergence form as
gpzh;paa- (25)
The twist tensor and the expansion rate tensor can be obtained by using the

antisymmetric and symmetric parts and are defined as

o 1 o o [¢4
Wy ﬁyzg(hﬂ gy~ My Vﬁ)zhH [Br] (26)

and

o 1 o a o
0y /37=E(hH gyt Py yﬂ)zhﬂ (By) (27)

respectively. Notice that the square brackets around the indexes represent the anti-
symmetric parts of the tensor and the parenthesis represent the symmetric part of the tensor.
Now that we have these projected tensors, we need to discuss how to take the
covariant derivative in the subspace that it exists in. We can do this by defining the
projected or restricted derivative. These objects act only on restricted objects, so
D,T=0V,T
where

oT

I
H

Then

D, T=H',D,T
mr Y (28)
D, , T=V',D,T
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This is the directional derivative projected into the subspace. The full covariant derivative

on a projected object is given by the restricted derivative plus correction terms, which are

the projection curvatures. Given a vector u € HT,, the full covariant derivative is

VHyu“=DHyu“+hH°‘ﬁyuﬂ (29)
and for u e VT,
Vy,u* =Dy, u*—hy ;% u (30)

Given a one-form ¢ € H'T ns the full covariant derivative is

Vi, u* =Dy u*+hi 3% uP (31

and for ¢ € V*Y;,

V, u* =D, u*—h,* 5 uf. (32)
The covariant derivative of higher rank tensors will include combinations of the projected
derivative and corrections for each tensor index.
We can now discuss the projected and restricted metricity, which is
o[" ", )*P =—H" H* H [V, "
=-H* V,(H";H® ,g°°)+H" (V,H" ;)H’ ,g°°
+H?  H* ;(V, H*),g°°
=— HngHaﬁ ++H" y(VpHaa)Hﬂ Ggso
+H? ,H* ;(V, H’ ,)¢°°.
But,

o o _ a T a _ 3T «
Vo H g=hy® g=hy " g by g% =y g%

Putting this in we get
Q[HH H]aﬂy=_DHngHaﬂ +HP y(hHaSp_hVaﬁp-i-hZIﬁap_h\:Ba p)Hﬂagaa

o 8
+prH S(hHﬁap_hvﬂap+h;aﬁp_h50pp)g a.
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If we now take two H projections

HauHﬂvQ[HHH]uV7=Q[HHH]aﬂY

HHap

- Hyg
+Ha;1Hﬁvay(hHuSp—hvuﬁp-'_thIB#p_thup)HVogaa
+H  HP HP  H* (R by oty =l . )8

H op ''v op' "Ho p— o p

Many of these terms go to zero because of the projection identities. We end up with

Q[HHH]aﬂy:_DHngHaﬁ+h;‘[6avaUg66+Ha6h;Uﬁyg60'

(33)
_ HHaﬁ+hT ] VH6ﬂ+h£

HV oo
=—Ly,8 Hs y8 .

B
(e} Y g
The first term is what we will define as the restricted metricity

_ ZngYa[iz ;(Yaﬁy' (34)

We then obtain
Q[HHH]aﬁyzQII;IHaﬁy_'_h;SaygVHSﬂ_'_hZIGﬁngVaO'. (35)
The other projections are given by Gowdy [2] and are

HH af _ nhHHop B HV o pu o HVEé P
Q[ V] = r_hV ry8 —hy sr8

Q[HVH]aﬁyz gvaﬁy_hvﬁungHa#"'thlaaygvvaﬁ (36)

HV JaB _ AHVap B HHau 1T o _VVGSB
Q[ V] Y_QV ¢ 7+hvu r & “H=hy s r 8 :
The term Qy;" * 7 is called the intrinsic metricity associated with the subspace HT,,

v ¥« % is the intrinsic metricity associated with the subspace VT, and the other

combinations are called the cross-projected metricities.

The torsion tensor S , 5 can also be projected. The restricted torsion tensors

S%y" 4p are defined in general by

[DXﬁ’DYa]f=S§YyaﬁDHyf+S;YyaﬂDVyf' (37)

By working through the full projections of the torsion tensor, we get the following
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S w ) ap=Stin" ap
SU wn)”ap= S n” ap=2hn (apy
S o) as=S v as i s (38)
S v ] as= SV ap= 2l fapy
S[" vl as=SVu” a1 5"

S[Vvv]yaﬂ___s‘\;vyaﬂ'
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Assembly Notation

When using this projection technique, one ends up with many more equations, each
involving H's, V's or combinations of both. These equations will become more compact if

we use assembly notation [2]. The projection labels on the projected tensor always

XYof

correspond to one of the indices on the tensor. So g could be written as g<x ) YB),

The restricted tensors will have the following form
X7 a B = Q(Xa) (rB) (z7) (39)

Sir” a5= 5% xay rmy- (40)

The fully projected tensors will be given as
o[, =0 170D ), @1

z z
S[“x v ]”as= L1 (xay rmy- (42)
If we now define an index inside pointed brackets without a projection label to mean that
we use the summation convention for the projections as well as the usual index, we get an

assembly. For example, the metric and form-metric assemblies are
8 ()(B)

and
g(a><ﬁ)_

Using this notation the definition of the restricted metric becomes

() (B) (o) (B
0% = =Dy g (43)

where Q' (F) (y) 1S DOW the restricted metric assembly.

The definition of the restricted torsion assembly becomes

_ o)
1Dy Do | £ =5 0y gy Doy £ (44)
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where here there is a projection label associated with & and f, and the index yis summed

over both H and V. § (o) (p) 18 called the restricted torsion assembly. Similar
expression can be obtained for Q[ ](“) (B) (r)> the projected metric assembly, and

S[ ](7) (@) () the projected torsion assembly.

In order to work in this assembly notation, it is necessary to define the projection

gradient assembly. Using this, Eq. (23) becomes

(@) _ (o) — ()
Vi H® (5= VH[ I 5y (5= VH® (5) (- (45)
The covariant derivative of a vector field u where u € HT, is
(o) _ (o) (o) (B)
Vipu™ =Dy u™ + VH™ (5 oy u™, (46)
and the covariant derivative of a form field ¢ where ¢ € H *YA; is
_ (8)
ViyyOay = Diyy Py + 8is)VH™ (0 1) - 47)
For vectors v and forms @ such that v e V]; and w e V*YA;,, these equations become
(o) _ (o) _ (a) (B)
Vv =Dy v =VH™ ) 1y v (48)
and
_ _ (B)
Vi) @y = Digy 00y = 0y V™ (4 ) (49)

since the complement of the assembly VH® (@) vy 18 -VH ) (@) () - 1O get the covariant
derivative of an arbitrary vector u, we can define the complementation tensor
C*p=H" 4~ V%, (50)
and
()  _ gla) _ yle)
o= H 5=V ) (5D

Then for any arbitrary vector field u and arbitrary form field ¢, we have

(a) _ (o) (@) (6) (B)
Viyu® =Dy u'™ + VH'™ 5y C gy (52)

Y
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and
_ (B) (8)
Vi Oy = Digy Gy + 95C" (5 VH™ 0y (1) (53)

The projection gradient assembly and the complementation assembly obey the projection

identity
(o) (8) _ _ o (8)
VH™ 5y 0 C" (5= —C () VH™ 15y 3. (54)
The derivatives of the vector and form fields can be made to look the same as their
unprojected form by defining the projection curvature assembly K () (8) (v) Where
(@) — () (6) _ _ e (6)
K™ gy (= VH™ (5 () C (5= =C (s VE () ) (55)
and the components of K are
(Ha) _ (Vo _ o
K gy (uyy=0 K gy =1 gy
(Ha _ (Ha) _ 37 «
K" gy vny=0 K% gy = —Pu gy (56)
Va) _ (Ho) _ «
KV )= By =" gy
Va _ (Vo) _ 37T «
K gy o= 0 K" gy =M 57y
Then
(o) () () (B)
Vi = Dy ! + K 5y 57
and
- _ (8)
Vi @y = Diyy bay =05y K (a) (- (58)

The gradient of an arbitrary rank tensor T decomposed into its restricted parts is then given

by
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V[ Jfhes)fe) o)) a)

L 8)(8) 48n) = Pl
LT ) )

(ﬁl )(ﬁz )"'(ﬂm >
(0‘1)
(BB 8.) K (8) ()

(a1>(5)“' a, o,
+T ( )(ﬂl)(ﬂz)'“(ﬂm)K( ><«s><y>

(ay){ry)+(8) (e, )
+o+T B8 K 5y ()

e o)) (59)

(6)
@)(a)(8) K (8) ()

_ (0‘1)(‘12 an) <5>
ko) o oyion K 5y i

e (6)
T K 5.y try

(B1)(B2)++(8)
We can use this equation to obtain expressions for the fully projected metricity and

torsion. They are

() (B) _ ) (B 8) () (B
o[ 9@ =0 240K E) (60)

Y

and

) —_ _ (
SU1™ =" @08y~ 2K (i ) (61)

The next assembly needed is the restricted curvature assembly. 1t is defined by
how restricted covariant derivatives act on restricted vector fields, which is given by the

following equation

(p) (o) = _ g (o)
W Ry ayipy™ {[D(ﬁ)’D(a)] ST vy D(y)}u - (62)
Since the restricted derivative always projects itself back into the subspace that it lives in,

the first two indices must have the same projection label. This gives the notation of the

restricted curvature assembly as

R0y (xars= Riv p ap (63)
and also gives

(Vo)

_ (o)
Riupy " aypy= Ry ayipy=0- (64)
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The fully projected curvature assembly is given by

(o) _ (o) (o) _ (8 (o)
RE iy arimr= Reoy ™ ot 2D K ko o) =S (e K™ (5 (59

(o) () (65)
2K sy 1ty K (o3 8]
This can be expanded to give
o) (Ho) o ad) (Ho)
R[ oy ™ ™ are=Rimy " o= 2K py 1 K7 o) 00 (66)
and
ve)  _ (vo) _ ql®) (vo)
RE Loy ™ tepy= 2Dy K (o o) =S (K" (1) (5) (67)

which are the Gauss-Codazzi equations for surface imbedding [2].
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Restricted Lie Derivatives
The restricted Lie derivative is defined in the same manner as the restricted covariant
derivative. If we have a restricted tensor T that is characterized by the projection
oT=T
where O represents a combination of the projections H or V for each index of 7, the
restricted Lie derivative of T is given by
L, T=0£,T.
The restricted Lie derivative of an assembly of restricted tensor fields is given by

(LNT)("‘l)(“z)"'(“n> ( ) = N(V) l)< T("‘l)("‘z)"'("‘n)

7) (ﬁl)(ﬂz ><ﬂm>
) )

B )(Bz)-++{Bn

4 (“1)
BB )(Ba) Py N

J——— A
T s sy D N

——e— T(‘xx)(az)“'()’) D(,y

(a,,)
B )B)(8n) Py N

oy Wa, )(a, ’ (r) (68)
Al el iy Dipy NV

(0‘1 ‘12)"'(% 4 (r)
rieen) e oy i Dy NV

ol ), ;)
e RN sy Dl N

Using this result, we can obtain the decomposition of the Lie derivative of the

projection tensor.
(@) _ A7) (@) _ gln) ’ {e) (@) ’ (r)
EH (= NV H (= BT (Vi) N+ H (Vi) N
Using Eq. (59) and Eq. (61) we get
(@  _ gl ry _ gin (o)
EH (= H™ () Dy N = HY ) Dy N
(N[ 17(6) (a) _ pyle) (8)
FNDH () S ) = H (58D 100}
This equation is antisymmetric under complementation, i.e.,

@ _ (@)
EH gy = £V .
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This leads to the expression,

()  _ 1 (o) (r) _ ~7) (a)
£, HY 5= (C i) Dy N7 = C" 5y Dy N ) 69)
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Killing Vectors and Isometry Group Orbits
A method often used in general relativity is to impose certain symmetries. When
we have a motion that preserves the metric tensor, it is called an isometry. One way to
describe this is to use a Killing vector.
A Killing vector is defined by Killing's equation

£§ 8ap =go‘ﬂvaéa+gaavﬂéa (70)
=V, +V 8, =0.

This equation says that the spacetime along a Killing vector field is unchanging. Thus the
geometry of the manifold is unchanged by a translation of all the points in the manifold by
k&, where & is the Killing vector and k is a constant [8]. When there are several Killing
vectors, they will form group orbits. A group orbit is the set of all points that can be
reached from a given point on the manifold along the Killing vector field. These are
surfaces where the geometry does not change. One example is the surface of an infinitely
long cylinder. The two Killing vectors in cylindrical coordinates are 6 and z. If we place
two points on the surface and move them through an angle 8, it does not change the
distance between the points. Similarly, the distance between two points on the surface
does not change by sliding them up or down the cylinder in the direction of the z-axis.
However, moving them along the radial direction will change the distance between two

points on the surface; thus it is not a Killing vector.



The Problem
Cylindrical Spacetimes

This thesis begins by assuming a vacuum spacetime with two-parameter isometry
groups or G, spacetimes. Let us also restrict this thesis to those spacetimes that have two
spacelike Killing vector fields. Now define H as the projection onto the group orbits
produced by the Killing vector fields . Then

H® g&F =¢&° (71)
and
Ve &l =o0. (72)

We can now choose a reference frame adapted to our spacetimes. Let x4 label the

orbits where A = 0,1. These functions are then constant on each orbit. For the coordinates

on the orbits, we choose x“ to be the Killing vectors where a = 2,3. We then have

éa a 8xa

(73)

Notice that all capital Latin indices will now sum from O to 1 and all lower case Latin
indices will sum over 2 and 3. This frame is now adapted to the orbit projections and we

have the following projection identities.

HO, =0,
Va, =0 (74)
HOJ, =0
Vo, =4,

This frame also gives the following pullback identities.
H'dx" = dx*

Vidx* =0 (75)

23
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Hdx" =0
Vidx* = dx*
Notice that these projections are now normal to each other. Using these, we get the metric
tensor
gap :gHHab+gVVAB = dx® e dx® + dx” e dx”. (76)
Since the projections are normal to each other and are onto group orbits, several

nice conditions arise. The normality of these projections imply that

ha =hT o

H By HB vy

and

ha :hTa

v By VB v
The fact that we are projecting onto group orbits also tells us that
h, % 5,=0, 77
which is to say that the surfaces orthogonal to the group orbits are extrinsically flat and that
the curves on these orbits must be geodesics. We can now set the only surviving
projection tensor curvature to
a _pa
hy” 5,=h" 4, (78)
the H subscript no longer necessary. We can decompose this into
a _ 1 pa
h* =0 gyt 70" 8unpy (79)
where 6“ is the divergence given by
0% =h*° (80)
and o s 18 the shear tensor given by

o

O gy~ h* ﬁy_%gHHﬁthcr' (81)
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The Semi-Conformal Transformation

We now assume that we have a metric compatible connection, i.e.,
0** =-V g*P=0. (82)

Consider another form-metric, g“ﬁ , the fiducial metric, that differs from the regular metric
by only a semi-conformal factor 2. A conformal transformation is when the metric that
solves Einstein's equations is multiplied by a scalar function, the conformal factor, that
depends on the position. This conformal factor does not change the angles between the
coordinates, but only changes lengths. The new metric is called the "fiducial" metric. By
defining objects such as derivatives in terms of the fiducial metric plus corrections, the
conformal factor gives information about the topology of the spacetime. This method is
often used in doing initial value problems in general relativity. Here, we will let the

conformal factor be different in the two hypersurfaces H and V. This is done by defining
Q" =Q"H* (+ Q" V", (83)

where Q" and Q" are just functions. It will further simplify the solution if we let these

functions be
Q7 =1 (84)
Q" = ¢ = exp(a) (85)
where a is a function, not an index. We then have
Bap =" Q% 58, (86)
Remembering that the cross projected terms are zero since we have normal projections, we

then have

Zap =8unap+(€°)8yvap- (87)

The fiducial form-metric is just
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P :gHHaB+(e—2a‘)gVVaﬂ (88)
since g, is block diagonalized. We will also assume that the metricity for the fiducial
connection vanishes,
0" =-V §’=0, (89)
and that the torsion in both cases is zero.

By determining what a is, it will tell us about the topology of the regular spacetime.
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Fiducial Derivatives

In order to continue, we must first consider how to take a derivative in terms of the

fiducial framework. In the fiducial metric, the covariant derivative of a vector is given by
V u=eub eg+u’ I’ o s (90)
Subtracting Eq. (90) from Eq. (6) gives
Vu—Vu=eu ey +u’ r’ a€s— e’ ey —u’ r? o €po

or

The term T’ va~ r? v Will occur often in this thesis, so we define it as

T =7, (91)

Yo
We can get gamma in terms of gradients of the conformal factor:
5 -
Y Yo Fﬁ ya 1“!3

_1
2

Yo

8 (eubior €180 — o) 5 8 (€uliy + o ol

By putting the fiducial metric into this equation and much algebra, it can be shown that
yﬁya =— (V‘3 , (eaa)+VB . (eya)——gvvﬂ"(eoa)gvvya) (92)
and in assembly notation
{e) —_ ylo _ylo vv{a){s)
Y ==V iy ena) =V 1) ( ema) + 8" e0a) govipin: 93

The regular covariant derivative of a vector in terms of the fiducial covariant derivative in

component form is then

(94)
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As before, the regular covariant derivative of a one-form in terms of the fiducial covariant

derivative in component form is given with a sign change

1

Va¢ _¢y ,},7 Ba

B = ~(x¢ﬁ (95)
= Vut¢ﬁ + ¢V[i(eaa) + ¢Va(e[3a) - ¢VG(eVo'a)gVVﬁa

Using these results, the covariant derivative of an arbitrary rank tensor 7 is then related to

the fiducial covariant derivatives of the tensor by

a0y, v a0y, Soy-a, o
V}’ ™= BiByBm VY ™= ﬁlﬂz"'ﬂm+ "= By By B y 1 sy
o, 8-, o, o 0,8 a,
T gy, Y syt T mos Vo g6

_Tal Oy -0y _ Tal Oy,

) 5
vBBn ¥ By BirBn ¥ Bry

0 Oy Oy 8
=T e ¥ By
From Eq. (57) we can obtain restricted covariant derivative of a vector in terms of

the restricted fiducial derivative

V(1/)

(@ _p o gl B
ul® = Dyl + K g u?.

We can then get the restricted derivatives in terms of the fiducial framework

(e) (@) B) _ N (o) (o) (B) (B) a/ (@)
Dy '™ + K™ gy oy ™ = Dy ™ + K0 gy oy ™ +uy

7) (B ()

or

where

(o) _ pla) (o)
K gy o= K oy o= K gy ) - o7

We would like to get k in terms of 7. We start with Eq. (55)

(o) _ (o) (6) _ (a) ()
K iy i1y = Vi 5y C (= Vi) H™ (5 C ()

Using Eqgs. (94) and (95), we know
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(B) — (BY _ (1) o (B)
Vit = Vo™ =ty )

(a

Vs = Viabis + ) ! (B))*

We then have

V. (o) (@) _ ry{p) (o) (a) (p)
Vi B (557 Viy B 5= H (7' Gyt B (7 (s,

{p)( 7"

The above equation for k then becomes

(@) _ ) 0 gl A8 (e
K5 oy o= BV oy B () O iV (50 - (98)
The equation for the restricted derivative is then
@ _ 7 e _ e B 4, (B) (@)
Dyyyu™ = Dy ™ =k gy (y ™+ U Y gy )
@ _ B @ _ ggle) L (B) ) (@) A8 (B) () (B) ()
Dy '™ = Dy '™ = H? gy sy gt Y (0 C g Y gy 7V 1y -
Substituting in Eq. (93) yields
@ _ 75 @ e By
Dyt = Dyyul® + H? ( ulP V(0]
_yle (B) _yley (B vV(a)(o) ()
V& g u (em“) VP (e<ﬂ>“)+g (%)") Evvipyn ¥
The components of this assembly are
DHyuHa — ~HyuH(X
D,,u"* =D, u"" (99)

Vo __ Va _ Va _ yo Vp VVop Vo
D, ,u"” =Dy, u (evya)u Ve, (evpa)u +g (evpa)gwayu

The restricted derivative of a one-form can also be obtained by using this method.

Starting with Eq. (58) we have

then
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_ = () ()
Dy @)= Pipy0isy K 5y i) Pray = U V' (8) (-
Substituting in k‘* ) (y) and ylo) (8) () Yields

+ V) (%)“)‘f’(a) +VE) (e<ﬁ>a)¢<a> ~8"" ) e)a) &y vigyi Py

The components of this assembly are
DHy ¢Hﬁ = D~Hy ¢Hﬁ
Dy, 8y = Dy, Gup (100)
Dyyy by = Dy by + (euy) v

a Vv
DVy ¢V,B = DVy ¢V/i +(eVya)¢Vﬂ +(eV,Ba)¢Vy -8 Up(eVpa) gVVBy ¢Vo
The restricted derivatives can easily be written by defining a restricted derivative

correction assembly, d® () () whose components are

(Ha) _
A gy (yy= 0

(Ha) _
™ gy vpy= 0

(Ha) _
A gy (=0

4

vy (vry= 0 (101)

4V

gy (yy= 0

(va) _
A" gy vyy= 0

(Vo) _ a
d¥ gy = ~€ny @)V 5

ae (VB) (v~ _(eVya) 4 Ve y (eVpa) ve pt gvvap(ev,;a) 8vveoy ve B
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The restricted derivative of an arbitrary rank tensor T is then given by

D, T} o) (o) Tl a ) ()

v) B)(Bs)8n) = Piry
L)) e

(Bi){(B2)(Bu)

0‘1)
8- L ) i)

+T(0‘1)(5>'”(0‘n) d(a2>

(B ){B2)(Bm) (8) (r)

(“1) 0‘2)“'(5) (an)
o TN BBy D (8 ()

_prlon Y ), (6) (103)
T{ ) oy 4

_ al)(aZ)"'(an (5>
!  yier 4 gy )

——e— T(al)(az)---(a,‘)
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Generalized Area Change of a Group Orbit
The generalized area element will give us a connection between the divergence and
the rate of change of the projected area element [2]. Consider a vector field N that is in
the VT, subspace. If we Lie-drag the logarithmic rate of change of an area element dA in

the HT, subspace we have

=7 8HHap Lyg

104
dA 2 (104)

From Egq. (68), we know that

LN gHHa[i =_QN[HH]aﬁ_2gHHp(a DHPNHﬁ) +2gVHp(ﬁhl7-'Ipa)GNH0'

+2gHHP(a h,S . B) ) N'° _ngHP(ahV B) bo NVe

or, in our case

LNgHHaﬁ =2gHHp(ah17;aﬁ)pNVa.
We then have
1 o 1 N i
Eg”H“ﬂLNgHH ﬁzEgHHa/sngHp( hgaﬂ)pNv =N°0,.

The connection between the divergence and the rate of change of the projected area element

is then

£, dA
dA

N°O, =— (105)
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Einstein's Equations

Using the normal projections on group orbits, it can be shown that the normally

projected Ricci curvature tensor is given by
R[HH]ozﬁ= gH aﬁ+ DVO’ hU af” eghtf off
R[VV]aﬂzR“//Vaﬁ+DVo'Ga_hapahﬂUp (106)

R[Hv]a/}=R‘fIH apf

R[VH](XI}:RI;/V(X[’-'_D h G/}-_DHﬂea‘

Ho "

Using these, Einstein's equations can be given in trace and trace-free parts by the following

set of equations [3]:

V _ 2-s pH I-s o o Y ap 16k
R), =2'RY, +2(2D,,0°-6,0)+0,” ,0F ~ 12T,

D, 0°-6,6“+R, =82”T§[sTVV+(2—d+s)THH}

TERy o5+ Dy, 07 4s=0,07 ,s=8TKTF T, . (107)

TFR}, .4+ TFD,,0,-TFc ,? ;0 ,° —1TF6,0, =87k TFT,,,,

1 5
(1-1)Dyp8, = Dys0 o 5=87K Ty 10
where d is the number of dimensions in the spacetime, and s is the number of dimensions
in the H subspace. In our case, d=4 and s=2. Also, Rg 18 zero here since there is no
curvature in the group orbits, i.e., all points in the group orbit are the same. The stress-

energy tensor 7 is zero since we are working with vacuum spacetimes. Einstein's

equations then become

R}, =-1(2D,,0-6,6")+0,7 ;0" (108)

14

D,,0%—6,6°=0 (109)
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D,, 0" ,;~6,0" ;=0 (110)
TFR), 45+ TFD,,0,-TFc ,?;0,° — TF6,6,=0 (111)
-3Dy56,—Dys0,° 5=0 (112)

The divergence-integrability equation [1, 2] is given by
Dy56,,=0. (113)
From this we see that 8, is the gradient of some potential function y that depends only on
the group orbit. From Eq. (105), we know that the divergence is related to the group orbit
area. We can define y such that
6,=-R'D,, R, (114)
and
0" =—R"'g""*’D,, R, (115)
where R is the radius of the orbit. Eq. (109) then reduces to
g’ D, ,D,;R=0. (116)
This equation is the same as Wald's (D.11) [11]. Thus, since we are in two dimensions, it

also holds that (116) is conformally invariant, or

g’ Dy, D,y R=0. (117)
In a holonomic basis, this becomes
g"?D,D,R=0
or
R-R"=0 (118)
which is the wave equation. R is the radius of the group orbit and could be either in the

time or space directions. If R is time-like, and we impose periodic boundaries on the

universe, this gives us a "wave-in-a-box" solution where the box is expanding in time. If
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R is space-like, it would represent universes with cylindrical symmetries. R tells us about

the topology of the spacetime.

Using Egs. (113), (114), and (115) we can get the other equations in terms of the

restricted derivatives. Equation (108) becomes
R/, =—3R*g"**(D,,R)(D,sR)+h," sh** . (119)
equation (110) becomes

R2 DVyhy a[i+]7 RDVy gHHaﬁgVVprVpR

(120)
+R(Dy, R\ s+ 18nap8” 7" (Dy, R)(Dy, R)=0,
equation (111) becomes
“TF[R™'D, ; Dy, R|~TF4[R*(D,, R)(Dyy R)| = TFh,” sh;° ,, (121)

and equation (112) becomes

R?(Dy4R)(Dyy R)+ Dyys hy,° 5=0. (122)
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Conclusion

Einstein's equations in the projection tensor field formalism have been sorted out in
this thesis. All of them have been reduced to equations involving only the restricted
derivatives. By substituting in the connection between the regular and fiducial derivatives,
and solving for the conformal factor, I hope to learn more about the topology of cylindrical
spacetimes. However, considerable work still needs to be completed on them.

A great deal of this work has been done in a general enough method that many of
the formulas derived, such as the restricted derivative assembly, that they could be applied
to other situations as well. By working out all the equations without defining the explicit
form of the metric tensor until the very end, we could apply these methods to any other

situation that exhibits symmetries in two or more directions.
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